2,180 research outputs found

    Skeletal sexing standards of human remains in Turkey

    Get PDF
    The identification of victims involved in mass fatality incidents, as well as the identification of unknown individuals in criminal cases has become an increasingly important issue nowadays. Sex assessment represents a key point in forensic evaluations due to its significance in providing biological identity. Even though the availability of documented skeletal remains to forensic practitioners is a common practice in many countries, in Turkey, contemporary documented skeletal remains are not available for this purpose. For this reason, studies have been focused on living populations. Previous research has shown that modern technologies such as CT scanning present very promising potential in establishing new standards for contemporary populations. Therefore, the main aim of this project was to examine the application of the measurements taken from 3D CT images of the femur in order to assess sex, and to contribute to the establishment of discriminant function equations for the Turkish population for forensic applications. The accuracy and reproducibility of imaging methods in the assessment of the measurements taken from femora are essential when estimating sex. This research also concentrated on determining the accuracy and repeatability of CT measurements, using the femur. Prior to primary data collection, a preliminary study was performed in an effort to test the reliability of the femur measurements. The results of reliability analysis indicated no significant difference between the three observations of each measurement. Thus, the methodology employed in the current study appears reliable and reproducible. In addition, a validation study was conducted to determine the linear measurement accuracy of the 3D volume rendering models derived from a medical CT scanner and the influence of different reconstruction parameters. The differences between measurements obtained from dry bones and their 3D volume rendered models were also evaluated. The results from this study indicated that there were no statistically significant differences between measurements taken from different reconstruction parameters and measurements obtained from CT images and drybones. Using the CT data, volume-rendering function (VR), 3D Curved Multiplanar reconstruction (MPR), and Scout View on OsiriX were employed in order to compare the accuracy and reliability of each rendering method and to determine which technique is optimal for linear measurements. Overall, the measurements taken from the 3D Volume Rendering images had the highest intra-observer reliability when compared to the other two rendering methods. This research study produced data and interpretations that will inform on and improve population specific standards of sex assessment from three-dimensional postcranial osteometric landmarks. Additionally, this research is believed to provide value for a developing discipline of forensic anthropology, and integrate within the existing systems of criminal investigation and disaster victim identification practices in Turkey. A Turkish sample population, consisting of 300 adult hospital patients was examined via the interpretation of CT reconstructed images using the OsiriX software. The 3D reconstructions were then created using the volume-rendering function in OsiriX (v.5.6.). Following the 3D reconstruction, an image of each femur was segmented from the surrounding bones to ensure the correct usage of landmarks as accurately as possible. Thirteen measurements were acquired using a 3D viewer after being located and marked on each CT reconstructed femora. These thirteen anthropometric parameters were measured and analysed by basic descriptive statistics and discriminant analysis methods using the SPSS 21.0 software package. The intra-observer variation was assessed by obtaining the intraclass correlation coefficient in order to evaluate the accuracy of the linear measurements taken. Asymmetry was also tested. The results indicated that an accuracy of 92.3% was acquired from a combination of six of the measurements, and the Femur Vertical Diameter of Neck (FVDN) measurement was found to be the most dimorphic with 88.0% accuracy

    ExoMars 2016 Schiaparelli Module Trajectory and Atmospheric Profiles Reconstruction: Analysis of the On-board Inertial and Radar Measurements

    Get PDF
    On 19th October 2016 Schiaparelli module of the ExoMars 2016 mission flew through the Mars atmosphere. After successful entry and descent under parachute, the module failed the last part of the descent and crashed on the Mars surface. Nevertheless the data transmitted in real time by Schiaparelli during the entry and descent, together with the entry state vector as initial condition, have been used to reconstruct both the trajectory and the profiles of atmospheric density, pressure and temperature along the traversed path. The available data-set is only a small sub-set of the whole data acquired by Schiaparelli, with a limited data rate (8 kbps) and a large gap during the entry because of the plasma blackout on the communications. This paper presents the work done by the AMELIA (Atmospheric Mars Entry and Landing Investigations and Analysis) team in the exploitation of the available inertial and radar data. First a reference trajectory is derived by direct integration of the inertial measurements and a strategy to overcome the entry data gap is proposed. First-order covariance analysis is used to estimate the uncertainties on all the derived parameters. Then a refined trajectory is computed incorporating the measurements provided by the on-board radar altimeter. The derived trajectory is consistent with the events reported in the telemetry and also with the impact point identified on the high-resolution images of the landing site. Finally, atmospheric profiles are computed tacking into account the aerodynamic properties of the module. Derived profiles result in good agreement with both atmospheric models and available remote sensing observations

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore